CouchbaseVectorAdd
Store a vector document with text content, embedding, and metadata.
Syntax
couchbaseVectorAdd(
cacheName,
text,
embedding,
[metadata],
[userId],
[conversationId],
[id]
)Parameters
cacheName
String
Yes
-
Name of the cache configuration
text
String
Yes
-
Text content to store
embedding
Array
Yes
-
Vector embedding array (e.g., 1536 dimensions)
metadata
Struct
No
{}
Custom metadata to store with document
userId
String
No
-
User ID to associate with document
conversationId
String
No
-
Conversation ID to associate with document
id
String
No
Auto-generated
Custom document ID (otherwise generates vec_UUID)
Returns
Returns the document ID (string) of the stored vector document.
Examples
Basic Storage
Store with Metadata
Store with User Context
Store Conversation Memory
Custom Document ID
Batch Storage
Knowledge Base Builder
Document Structure
The stored document contains:
Notes
Embedding dimensions - Must be consistent across all documents (e.g., 1536)
Text chunking - For large documents, split into smaller chunks (500-1000 words)
ID format - Auto-generated IDs are
vec_+ UUIDTimestamps -
createdAtandupdatedAtare set automaticallyType field - Always set to
"vector_document"for vector searchMetadata - Can contain any JSON-serializable data
Updates - Use same ID to update existing document
Best Practices
📏 Chunk size - Keep chunks 200-1000 words for best results
🔗 Metadata linking - Use metadata to link chunks back to source documents
🏷️ Categorization - Use metadata categories for filtered searches
👤 User isolation - Always set userId for user-specific data
💬 Conversation tracking - Use conversationId for chat history
🔄 Batch processing - Process multiple documents efficiently
Related Functions
couchbaseVectorSearch - Search by similarity
couchbaseVectorGet - Retrieve vector document
couchbaseVectorDelete - Delete vector document
couchbaseVectorList - List vector documents
See Also
Last updated
Was this helpful?
